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ABSTRACT 

A phase-locked loop is briefly described, together with the derivation of the 
basic differential equation which governs the dynamic behavior of the loop 
during the pull-in process.   The special case of the pull-in process of the 
first-order loop when a sine wave of constant frequency is applied to the 
input of the loop is also described.    The relationship between the frequency 
mistuning of the loop, the initial starting phase angle of the input sine wave, 
and the time required for the loop to pull in is discussed.    The statistical 
parameters associated with the pull-in time is reviewed.   In particular, 
expressions are given for the probability density function of the pull-in 
time and the cumulative distribution of the pull-in time. 

REVIEW AND APPROVAL 

Publication of this technical documentary report does not constitute Air Force 
approval of the reports findings or conclusions.   It is published only for the 
exchange and stimulation of ideas. 
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Colonel, USAF 
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SECTION I 

INTRODUCTION 

The ability of phase-locked loops to separate narrow-band signals from 

wide-band noise has led to their increasing use as FM discriminators, tracking 

filters, and synchronizing devices, particularly in space communications. 

It is possible to design a phase-locked loop so that the loop need have an 

effective bandwidth only large enough to pass the difference between the input 

signal frequency and the estimate of this frequency as generated by an oscillator 

within the loop.   Since this difference frequency has considerably less variation 

than the actual input signal, the loop does not need nearly as large a bandwidth 

as would be needed if the loop were merely a tuned circuit placed between the 

system input and the output, which would have to pass all frequencies over 

which the input signal varied. 

Since the bandwidth of the phase-locked loop can be made much smaller 

than that of a comparable nontracking filter, the amount of noise reaching the 

output is considerably smaller, and the loop develops a greater resistance to 

noise at the input. 

However, improvement in one aspect of a system usually results in a 

sacrifice in another, and phase-locked loops are no exception.    The reduction 

in the effective noise bandwidth results in an increase in the pull-in time of the 

loop, that is an increase in the time between the appearance of a signal at the 

input and satisfactory operation of the loop. 

The pull-in time can usually be neglected for systems having long periods 

of continuous communication time available, as would the case for a stationary 

ground-based system with direct line of sight.   However, instances do arise 

1 



where the pull-in time of the loop may be a significant fraction of the communica- 

tion time available.   Two examples that come to mind are a meteor-burst scatter 

system, where the ionized trails only last for a few seconds, and a military 

satellite communication system subject to pulse jamming, where a straight- 

forward defense against the jammer is achieved by gating the satellite receiver 

on and off in a pseudo-random fashion. 

With these comments in mind, it is apparent that the pull-in time of a 

phase-locked loop may be a significant factor in the design of certain communi- 

cation systems.    To illustrate the problem of pull-in time, the example of the 

simplest type of phase-locked loop is chosen, and the time required for the 

loop to pull-in When an input signal of constant frequency is applied to the input 

is derived. 



SECTION n 

DESCRIPTION OF PHASE-LOCKED LOOP 

The basic elements of a typical phase-locked loop are shown in Fig.  1 

and consist of:    a voltage controlled oscillator (VCO) with a nominal frequency 

equal to that of the input to the loop; a phase detector which compares the phase 

of the output of the oscillator with that of the input to the loop; an amplifier 

which amplifies the output voltage of the phase detector; and a low-pass filter 

which filters the output voltage of the amplifier before it is applied to the VCO. 

Briefly, the phase-locked loop operates as follows:   The phase detector 

beats the signal input and the VCO output together, giving a low-frequency 

output proportional to the sine of the phase difference between the two signals, 

together with a high-frequency component located at the sum frequency of the 

two inputs.    The low-pass filter accepts only the low-frequency term, which 

is applied as a control voltage to the VCO, forcing the output phase of the VCO 

to follow the input signal phase.   Figures 2 and 3 show the control characteristics 

of the phase detector and the voltage-controlled oscillator.   The phase detector 

generates a voltage e   (t) which is proportional to both the amplitudes of the 

two inputs signals and to the sine of their phase difference, the constant of 

proportionality being  K„.   (Ka has dimensions of (volts x radians)    .)   The 

voltage-controlled oscillator shifts its output frequency by an amount propor- 

tional to the voltage applied to its control input, the constant of proportionality 

being Kvco (radians/sec/volt).    The point about which the frequency of the 
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VCO shifts is Cü0 , usually referred to as the natural or free-running frequency 

of the VCO.   Figure 3 indicates that <u0  is the output frequency of the VCO 

when the control voltage is zero. 

The differential equation governing the dynamic behavior of the loop is 

derived below.   The input signal to the loop is assumed to be vT E sin (<u0 + 0j (t)), 

where   E  is the rms amplitude and   0j (t)   represents the variation of its phase 

as a function of time.   The output of the voltage-controlled oscillator is 

assumed to be    \[2 C cos(<u0 + 62 (t)),    where  C is the rms amplitude and 

represents the variation of its phase as a function of time. 

A natural question at this point is why are the loop-input frequency and 

the VCO frequency expressed in terms of   cuQ plus a time-varying phase angle 

rather than in terms of two different frequencies, for instance,   <uj   and a>2- 

When the loop input is frequency modulated, both the input and VCO frequencies 

change as a function of time during and after the condition of lock-on.   If the 

input frequency is held constant, the VCO frequency changes as a function of 

time during the lock-on process, and then remains constant.   Therefore, both 

frequencies generally vary as a function of time.   Hence, it is very convenient 

(in a mathematical sense) to express both frequencies in terms of a frequency 

which is fundamental to the system and which always remains constant.   The 

natural frequency of the VCO,   a>0, is just such a frequency.    For example, the 

input to the loop was written as 

VT E sin [ü)0t + dx (t)] (1) 

Suppose the loop input is a sinusoid of constant frequency   wj  given by 

\pT E sin (&>jt + a) 

5 



We could just as correctly write it as 

V~2~ E sin [wQt + («! - a>0) t + a] .^. 

Which when compared with Eq. (1) gives 

<9j (t)  =   (col - o)Q) t + a 

Therefore, there is nothing lost by expressing signals of different frequencies 

all in terms of the same frequency, provided the necessary adjustment is made 

in the time-varying phase angle. 

Continuing the development of the differential equation, the output of the 

phase detector is given by 

el (t)  =   Kß  VT  E sin [cü0t + öj(t) ] y/T C cos [wQt + <?2(t)] 

(3) 

=   Kö  EC { sin [2wQt + Ö^t) + 02(t)]   +   sin [(^(t) - 02(t)]| 

The term   2 w0  in Eq. (3) can be neglected, since neither the low-pass 

filter nor the VCO will respond to it, provided   (OQ  is reasonable large. 

The output of the filter is then given by 

ec(t)  =   Kj F(S) Kg EC sin [ö^t) - 02(t)l (4) 

where    F(S)   represents, in operational notation, the effect of the filter on the 

signal sin [d1 (t) - 62 (t)]. 



Let 

e1(.t)-e2(t) = ö(t) (5) 

where   0(e)  is the instantaneous phase difference between the input signal and 

the output of the VCO. 

Equation (4) then becomes 

ec(t)  =  Kj F(S) Kg, EC sinö(t) (6) 

The output frequency of the VCO is given by 

«^ + 02(0   =  "0 + Kvco ec(t) (7) 

Substituting for    ec (t)   from Eq. (6) gives 

^2(t>  =   Kvco Kl K6 EC F(S) sinö(t> (8) 

Differentiating Eq. (5) with respect to time gives 

e2(t) = d^D-m (9) 

Substituting in Eq.  (7) for   62 (t)   gives 

öj(t) - 0(e) =  Kvco Kj Kd EC F(S) 



or 

Ö(t)  =   öj(t) - Kvco Kx Kö EC F(S) sinÖ(t) (10) 

Let 

K  "  Kvco K0 Kl EC 

Equation (10) may now be rewritten as 

0(t) =  ö:(t) - KF(S) sinÖ(t) (11) 

Equation (11) is the basic differential governing the behavior of the phase-locked 

loop where 

0(t)       =  instantaneous frequency difference between the input to the 

loop and the output of the VCO. 

0j (t)    =  instantaneous frequency difference between the input to the 

loop and the free-running frequency of the VCO. 

0(t)       =  instantaneous phase difference between the input to the loop 

and the output of the VCO. 

The terms "instantaneous phase difference" and "instantaneous frequency 

difference" are discussed in Appendix V. 
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SECTION m 

CONSIDERATION OF FIRST-ORDER PHASE-LOCKED LOOP 

The simplest type of phase-locked loop is that shown in Fig. 1, except 

that the low-pass filter is omitted, a direct connection being made between 

the output of the amplifier and the input to the VCO    [F(S) = 1] .   Although the 

low-pass filter is not present in the feed-back loop, it is assumed that the VCO 

will not respond to high-frequency components applied to its input (that is, the 

term in  2 oQ  resulting from product detection). 

We now consider the case where a sine wave of constant frequency   a>i   is 

applied to the loop. 

For the case discussed above, Eq. (11) takes the particularly simple 

form given by 

0(0 =  Aw - K sinÖ(t) (12) 

where 

0(O 

0(0 

'l-wo 

*   instantaneous phase difference between the input to the 

loop and the output of the VCO. 

=   instantaneous frequency difference between the input 

to the loop and the output of the VCO. 

=  frequency difference between the input to the loop and 

the free-running frequency of the VCO. 

=  open-loop gain of the loop. 



Equation (12) is a differential equation of first order, so that the phase- 

locked loop shown in Fig. 1 (with the low-pass filter omitted) is usually referred 

to as a first-order loop.   Basically, Eq. (12) states that when a sine wave of 

constant frequency is applied to the first-order loop, the sum of the instantaneous 

frequency difference, plus   K  times the sine of the instantaneous phase differ- 

ence, is always constant, that is 

0(t) + K sinö(t)  =  Ao> (13) 

In general, there will be both a frequency difference and an initial phase 

difference between the input to the loop and the free-running frequency of the 

VCO.    The process of pulling the VCO into frequency alignment with the input 

to the loop will, therefore, require finite time.    Further on in this report, the 

pull-in time is shown to be a function of both the initial frequency detuning 

(col - <uo)    and the initial phase angle   0j. 

A plot of Eq. (12) helps in understanding the physical process by which 

the phase-locked loop pulls into frequency alignment with the input; it is shown 

plotted in Fig. 4. 

The first point to note is that the system represented by Eq. (12) is in 

equilibrium when the instantaneous frequency   0(0   is zero. 

This occurs when 

Aco - K sintf =   0 (14) 

or 

Aw 
sinÖ  =      

K 

10 



Fig. 4.    Plot of 0   Versus 9 for a First-Order Phase-Locked Loop 

Let 

sin 
_1     Aa> 

=   0„ 

Then the system defined in Eq. (12) is in equilibrium for values of  6 

given by 

6  =   n;7 + (-l)n 6> (15) 

11 



where  n   is an integer including zero. 

The values of  0  given by Eq. (15) obviously occur at the intersections 

of the curve with the   0(c) = o   axis. 

Which of the values of   0 given by Eq. (15) represent positions of stable 

equilibrium?   For   0 positive the rate of change of 0 with time is positive, 

implying that   0 is increasing.   On the other hand,   0  negative implies that 0 

is decreasing with time. 

These two conditions indicate that for any phase position for which the 

curve is above the   0 = 0    axis (Fig. 4),   0   moves to the right (0  increasing), 

while for phase positions below the   ö=o axis,    0 moves indicate the direc- 

tions in which 0   moves with time.    These conditions indicate that values of 0 

in Eq. (15) for which n   is even are points of stable equilibrium, while those 

for which  n   is odd are points of unstable equilibrium.   Since the curve drawn 

in Fig. 4 is periodic, it is sufficient to restrict our attention to any convenient 

2n radians. 

If the mistiming   Aw   is increased, the phase trajectory shown in Fig. 4 

moves upwards with respect to the   0 = o   axis until the two values of   0 (stable 

condition and unstable condition) coincide.    For this value of  0, say    ö   ^ , 

_l    &CÖ _,     Aw 
6..-t  =   sin      =   n - sin   
cnt K K 

or 

sin 
Ad) IT 

A<u 

K 

12 



Hence, for the case where the mistuning   Aw   equals the open-loop gain  K, the 

system reaches a position of unstable equilibrium where any slight disturbance 

of the phase due to noise within the loop may cause the phase to recycle to the 

next point of unstable equilibrium. 

The above considerations lead to the conclusion that the mistuning 

Aw = (wj - coQ)     should be less than   K  rads/sec so that the first-order phase- 

locked loop settles down to a steady condition; i.e., 

|Aw|   =   |&>2 - «y  |  < K radians/sec (16) 

For the condition given by Eq. (16), the steady-state phase error   QQ  is given 

by 

,    Aw 
0    =   sin-1     — 
° K 

13 



SECTION IV 

PULL-IN TIME FOR LOOP 

The time required for the loop to pull-in is given by the time required for 

the phase difference  d  to traverse the phase trajectory from some initial value 

0;   to its steady-state value 0  .   The time required to reach   6    is always 

infinite and independent of  0j, since as d   approaches e , 6  changes very 

slowly (i.e.,  6 approaches zero, see Fig. 4).   This point is discussed fully 

in Appendix I. 

It is more realistic to say that pull-in time is the time required for  0  to 

change from some initial value 0;   to   (0O - e) or    (0O + e)   depending upon 0; 

lying to the left or right of  6     (see Fig. 4).   Appendix I shows that the pull-in 

time   T  is given by 

T = 
sec0„ 

K 
In 

cos 

(17) 

for -(» + 0O)< 6i < 60 - e ;  and by 

sec$„ 
In 

csfro+ v sin("V1) 
sin   — 

2 

(18) 

for (6o + t)<6i<(n-0o) 

14 



If the initial value of   0; lies in the interval   (0O - i) < 0j < 0O + t,   the pull-in 

time is, of course, zero, since the phase angle   0.  is already within the region 

defining the condition of lock-in.   Stated formally,    T = 0 , for  (0O - t)  < 

0i < (0O + 0 • 

Examination of Eqs. (17) and (18) indicates that the pull-in time T  is 

infinite when 

n 
sec0o = <*    or   0Q = —   ;  this corresponds to the case already 

discussed, in which the detuning   ACü   is increased until it equals 

the open-loop gain  K. 

K = 0 ;   this is a trivial solution corresponding to the open-loop 

gain K = o. 

t 
sin — = o     or ( = o  ; this has also been discussed previously; it 

takes infinite time for the loop to pull-in to its steady-state phase 

error 0O. 

cos0i + 0o 0i + 0o nn 

  =   0 , or       =   —    ( n odd). This occurs when 
2 2 2 

0- = (n?r - 0 )    and corresponds to the initial phase angle starting 

at the points of unstable equilibrium given by Eq. (15) for n   odd; 

i. e.,   0; = in + 0O) or 0. = (» - 0o). 

zero when 

0. = (0O - ()   for Eq.  (17) and    8i = (0O + 0     for Eq.  (18). 

The actual definition of pull-in time is somewhat arbitrary, since it 

depends on a satisfactory choice being made for the value of <.   In 

15 



this report, the time taken for the loop to pull-in to within 5 degrees 

of its steady state value (e  =  5 degrees) will be called the pull-in 

time. 

The expressions for the pull-in time   T  given by Eqs. (17) and (18) are 

rather involved; however, they show that   T   is 

inversely proportional to the open-loop gain  K.   (For the first-order loop 

K 
discussed in this report, the noise bandwidth   Bn  is equal to — cps , so 

that the pull-in time is also inversely proportional to the noise bandwidth.) 

a nonlinear function of the initial phase angle 0; 

a function of the steady-state phase angle 6Q , which in turn is a function 

of the ratio: 

frequency mistuning 

open-loop gain 

Aco   / ACJ\ 
     li.e., sinß     =     I 
K    \ ° K/ 

Equations (17) and (18) can be rearranged so that the product    T • K    is 

then a function of the steady-state phase angle   80  and the initial phase angle   6., 

Figure 5 shows    T • K   plotted against the initial phase angle 0j , 

for   0O =   0 , 30 and 60 degrees corresponding to 

Aw 
    =    0,0.5 and 0.866. (19) 

Figure 5 also shows that certain characteristics regarding the pull-in 

time   T   now become apparent. 

16 
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T starts to increase rapidly for initial phase angles approaching -(n + 0 ) 

and   (n - 6 )   for all three values of  e ■   The values   0; = -{n + d )     and o o l o 

0; = (n - 6Q)     are actually asymptotes corresponding to infinite pull-in 

time. 

The two branches of the curve for   0    = 0    are symmetrical about the 

line    0] = 0Q =   o ; as the mistiming increases (0    increasing), the two 

branches become asymmetrical about the line   0j = 0O .    There is also 

a general increase in the pull-in time as 0Q   increases. 

18 



SECTION V 

SUMMARY OF PROBABILITY CONSIDERATIONS ASSOCIATED WITH 
PULL-IN TIME   T   FOR FIRST-ORDER PHASE-LOCKED LOOP 

The results obtained in Appendixes I, II, in, and IV regarding the statisti- 

cal nature of the pull-in time are discussed in this section. 

In Appendix I (Eqs. (46) and (50)) it is shown that the pull-in time   T  is 

given by 

sec#„ 
In 

cos fcli) 
*o-*i 

2 

COS 
*o + öi. 

(20) 

for    - (77  +   60)  <   ei   <   (d0 - e); 

and by 

sec6> 

K 
In 

cos 

• *     -C£)J 
(21) 

for do + (<di<(n-d0). 

19 



Let 

and 

In 

KT  =  X 

id 
sin   — 

2 

In M' 
sin   — 

2 

Equations (20) and (21) become 

X   =   sec0o   • In 

sin 
öo"öi 

2 

cos 
öo + Öi 

2 

(22) 

for   -in + 60) < 0j < (ö0 - 0 ; 

20 



and 

X = secöQ   < 

sin 

Öi + öo 
(23) 

for (e0 + ()<ei<(n-d0). 

The probability density for   X   (derived in Appendix II) is given by 

p(X) =  _ (x =  0) 
77 

(24) 

and by 

p(X)  = 
cos2 e0 r i 

2 77        I cosh(cosö X -B)-sinö0 cosh(cosö X-B-B^sinö, ] 
(X  >   0) 

(25) 

The probability density, as given by Eq. (25), is shown plotted in Fig. 6 

/Aw 
for   eo  -   0,  30   and 60 degrees   (— = 0, 0. 5 and 0. 866 ) .   The value of t 

was again taken as  t = 5 degrees. 

') 
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X'KT 

Fig. 6.    Probability Density Function for the Product (T x K) 

The mean of  X,   (X), (Eqs. (98) and (99), Appendix ID) is given by 

X   =       secö 
277 

B(ir + 2d0 - e) + B1 (ir - 20Q - t) + 

/ 

o      2 2 

In (cosA)dA - 4 In (sinA)dA 

<L - 
I 

(26) 
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If  t is small, the last two terms in Eq. (26) may be ignored and the equation 

reduced to 

X  =   —   sec0„   [B(;r+20ri)+B1 (n - 20 J] 
v 

(27) 

For t small      B ~ B1 = In (cos0o cot - J,   so that 

/2 COS0A 
X »  sec0olnl I (28) 

for e   small. 

Figure 7 shows how x   varies as a function of the steady-state phase 

Aw , - 
angle   0O, which is related to   Ao>   and   TK   by         =  sin      dQ .   X has been 

K. 

plotted against  0O   for ( =   5 degrees and 0. 5 degrees, and indicates how the 

mean value of the pull-in time increases as the loop pulls in closer to the 

steady-state phase angle. 

The cumulative distribution for   X   is derived in Appendix IV and is 

given by 

[/ cos0„ X -B \ / cos0nX -B1 \*1 

Figure 8 shows the cumulative distribution of  X   for   0O =   0, 30   and 

60 degrees.   The value of t   is again taken as 5 degrees. 

P. Bratt 
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APPENDIX I 

DERIVATION OF THE FORMULA RELATING 
PULL-IN TIME   T   TO THE INITIAL PHASE ANGLE    6-l 

The time required for the phase difference in the loop   0 to traverse 

the phase trajectory shown in Fig. 4 between an initial value  <9j   and a final 

value  6(   is obtained by integrating Eq.  (12) and evaluating for   &i  and  0f. 

Equation (12) may be rewritten as: 

  =   K dt 

     —   sinö 
K 

or 

dö 
    =   Kdt 

where 

Aw 

K 
(30) 

Integrating Eq. (30) gives 

d( JT 

Je     (a"sind) = I 
Kdt 
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or 

JT^T1 In 

a tan 

-   KT 

Ö: 

(31) 

Let 

/n a'   =   A 

—    In 
A 

a tan —   — (1 + A) 
2 

a tan  — - (1 - A ) 
2 

=   KT (32) 

Substituting the limits in Eq. (32) gives 

a. 
A 

a tan   —  — (1 + A) 
2 

tan (1 - A) 
2 

In 

a tan  —  — (1 + A) 
2 

a tan — - (1 — A) 
2 

k =   KT 

'1 
(33) 

Before going further with this equation, consideration should be given to the 

range of values of  <9;   and  0(   for which evaluation of Eq. (33) is of interest. 
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Basically, we require the time taken for  0 to change from an arbitrary 

initial value 0;   to its final value  0f = sin-1 a = dQ   , which is the steady- 

state phase error, as explained previously.   Therefore 0f   in Eq. (33) is simply 

0Q, the steady-state phase error. 

We now consider the range of initial values of 6-t   to be used in evaluating 

Eq. (33).    Figure 4 shows that 0.   falls into two convenient ranges.    They are 

-(* + e0) <ei<0o (34) 

and 

6o<d.<n-d0 (35) 

Returning now to the evaluation of Eq. (33), if the value   0    is substituted 

for 0f   in the first term of the left-hand side of the equation the denominator 

becomes zero and the term itself becomes infinite.   This arises because 

6o 1 - A 
tan    — =         (sinfl     =   a and cos0„   =   A) 

2 a ° ° 

j/3 

This is to be expected, since as  0  approaches 0O,   —   tends to zero; 
dt 

e. g., the phase is changing very slowly, requiring infinite time to reach its 

steady-state value of   0Q.   Therefore, the time required for the phase-locked 

loop to pull into its steady-state value becomes infinite, independent of the 

initial value of the phase.   To avoid this difficulty, the time required for the 

phase  0  to pull-in to within i  of the steady-state value   0O   from an arbitrary 

value of 0j   is determined (see Fig. 4). 
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Equation (33) is evaluated below in two separate sections according to the 

two possible ranges of  0j   as given previously, i. e., 

-{n + d0)<ei<(d0-€) 

(d0 + €)<ei<(n- e0) 

PULL-IN TIME FOR -(IT + 6Q) < 6i < dQ - t 

The first term in Eq.  (33) is   L where 

L  =   In 

a tan  —  — (1 + A) 
2 

a tan — - (1 - A) 
2 

(36) 

where 

Expanding 

6{ = (öo-e) 

df (0o - 0 
tan   — 

2 

o ( 
tan  —  — tan _ 

2 2 

K 7 
1 + tan —   • tan — 

2 2 
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Now 

and let 

0 
tan 

o        (1 - A) 

tan — =  a 
2 

tan —  =   tan 
2 

<0O - 0 (1 - A)- a a 

2 a + (1 - A)a 
(37) 

Substituting for   tan —    in Eq. (36) gives, after some simplification, 

\a(l- A)  / 
(38) 

We now consider the second term in Eq. (33),   M, where 

M  =   In 

a tan   — — (1 + A) 
2 

°i 
a tan (1 - A) 

2 

(39) 
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When considering the initial values of 0,  0; ,   it is convenient to use the point 

of unstable equilibrium at   - (IT + 0O)   as a reference point in the same way that 

the final values of   0 were measured with reference to the stable point   0  =  0Q . 

Referring to Fig. 4 and measuring from the point of unstable equilibrium, 

it is seen that 

°i = (77 +  0o) + S 

= -  77 -  (0  -  8) 

tan — 
r-77-(0o- 

tan 1 
-1 

2 L   2 J 

<"„ - «) 
0              X o             0 

1 + tan   —   tan — 
2             2 

2 0                  Ä o                o 
tan   —   — tan — 

2                   2 

öo           (1 - A) S 
Recalling that   tan —   =          and letting   tan — =   /3  , 

2 a 2 

1 - A 
6 1+     -Z3 

tan  1  =     !    =    3 + (1-A)^ (40) 
2 1 - A (1 - A)- a fl 
 ß a 

Substituting in Eq. (39) for   tan —   , we obtain, after simplification, 

a/8 
M =   In  i 1 (41) 

) (1 - A) (A + a ß) j 
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Using the values obtained for   L  and   M from Eq. (38) and (41) and substituting 

in Eq. (33) gives 

KT ijmra(A+aa)i-inr. 
A)     |^a(l-A)J |( 

1 j(A + a a) (A + a ß)~\ 

"Ä    lnL""« ß       J 

ß 
(1 - A) (A + a ß) ] 

(42) 

( 8 
Recalling that   a = tan —     and   ß = tan   —   ,    Eq. (42) becomes 

KT  =   - 
A 

Acot-+aj   ^Acot7+ajy 

K\   / S        \1 
A cot — + al   |A cot — + all 2   / V     2    'J 

(43) 

Recalling that    A = cos 0o    and    a = sin 6Q,    Eq. (43) may be written as 

l 

K cos 0 
In 

foy)     cos(,0-4) 
(44) 

33 



Also 

?i  =   -(n + 0o) + 8 

for   - (77 + 0O) <6i<e0-t,       so that 

8 = di + 7T + 60 (45) 

Equation (44) may now be rewritten by substituting the dependent variable   0; 

for 8 . 

Equation (44) now becomes 

l 

K cos 0 
In 

Sinl (6° + di\ 
cos\-T-) 

(46) 

PULL-IN TIME FOR    (6Q +  ()  <  6-i  <  (n - ÖQ) 

Using the same approach used in evaluating   T   for the range 

- C77 + d0) < #i < (ö0 - e),   but using the point    0 = (n- - 0O)    as a reference 

for the initial value of  0  (see Fig. 4), it can be shown that 

Ke \    ( 8        \) 
A cot —  — a I    I A cot — — al 

/ V % (47) 
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which reduces to 

l 

K cos d„ 
In 

cos («o i) "»(«<> *4) 
sin — 

2 

5 
»in — 

2 J 

(48) 

We can rewrite Eq. (48) with  6.   as the dependent variable since 

*i - »-*,-«, 

for (e0 + o < ei < (ir-e0), or 

8 = (»r - ö0 - Öj) (49) 

Therefore Bq. (48) becomes 

l 

K cos 6„ 

cos 

In 
M) 4^) 

° 1 
(50) 

35 



APPENDIX II 

PROBABILITY DENSITY FOR THE PULL-IN TIME 
FOR A FIRST-ORDER PHASE-LOCKED LOOP 

In Appendix I it was shown that the pull-in time for the first-order 

phase-locked loop is given by (see Eqs. (43) and (47)). 

KT = 
1 \j c       \    I 8       \1 
    In    HA cot — + a)    IA cot — + all (51) A     (V / V     2   ;j 

for   -(* + 0o)< 0i<(0o-O; 

and 

KT —    In   If A cot —  - a j   f A cot  - + all (52) 

fOr     (fl0 + e) <   0;  <   (77 -  d0)  . 

Equations (46) and (50) gave the pull-in time with the initial phase angle 

Q. as the dependent variable.    In this and later calculations on probabilities, 

it was found that the mathematics was greatly simplified by using 8 as the 

dependent variable.    It is then quite simple to substitute for 8  in terms of 0. 

at the end of the calculations.    For convenience we let KT = X in Eqs. (51) 

and (52), which then become 

X   =   —    In   11A cot — + aj    IA cot — + a I (53) 
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and 

l 
X   -    _ 

A 
Ucoli-aj     fAcot_-aj (54) 

To obtain the probability distribution for   X, we assume that all initial 

phase angles   tfj,   -(n + 0Q) < 0-t _ (n - 0o)     are equally probable; that is, the 

probability distribution for   0-   is uniform and of value     p (.6-) =        (see 

Fig.  9). 

Since the use of o   as the dependent variable instead of   öi   is simply 

a linear shift of the angular coordinate, the probability distribution for 8   itself 

l 
is uniform and of value    p (<S)       —   . 

The probability distribution   p (X) consists of two parts, one discrete and 

the other continuous.    The discrete part consists of an impulse at   X = 0 

magnitude    -f^     —    .    This can be seen by considering Fig.  9, which shows 

that initial phase angles 0, such that   n   - , -  o.     o   + f    already lie within 

the prescribed distance ot   it     and are therefore regarded as synchronous 

and requiring zero time to pull-in. 

The continuous part of the probability distribution is determined below. 

It is again convenient to break this problem into two sections according to 

the two possible ranges of   (>t . 

(o   . 0     ii. ■   ;.,■ - 'i ) 
O —     I — o 

;!," 



I 
2ft 

f P(ej 

4A 

(<i+e0) 6i e0 (it-o.) 

Fig. 9.   Probability Distribution for Initial Phase Angle 0. 

PROBABILITY DISTRIBUTION   p (X)   FOR   -(77 + <9Q) < 6i < W0 - e) 

Using Eq. (53) 

1   r/   « w   * \i _    in   |^Acot_+aj    ^A cot _ + ajj (55) 

or 

B 1 / 8       \ 
=   —   +   —    In I A cot — + a I 

A A V / 
(56) 
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where 

B  =   In (A cot — + a) V     2   / 

is a constant dependent on the mistuning and (, and does not contain the 

variable  5. 

Since   x  is a continuous single-valued function of   0.   for the range of 

values of 0j   considered, the probability that the variable   X  lies between 

the values  x   and   x + dx    is equal to the probability that the variable   0j  lies 

between the values   0  and   0 + dö .   This is also equal to the probability that 

the variable    S lies between the values   0   and   0 + dd   as previously explained: 

p (x < X < x + dx)  =   p (0 < di < 6 + dö) 

=  p (0 < S < 0 + d0) 

In differential notation 

p (X)  dX   =  + p (S)  dS 

or 

p(X) = +P(S) 
1 

~dX~ (57) 

dS 
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Since 

P (8) = p (0j) = 
2   77 

we require only  —  in order to evaluate   p(X) using Eq. (57). 
dS 

Using Eq.   (56) 

B 
X  =   —   + 

A 

dX 1 

IF     1 

1 / 8       \ 
—    In  I A cot  —  + a / (58) 

d   /        s     \ 
—   II cot — + a ) 
dS   V 2        / / 5        \ |A cot — + a 1 

V     2    / 

2   S 

cosec    — 

/ 8        \ I A cot — + a I 

V      2    / 

(59) 

We now require the trigonometric function in Eq. (59) in terms of X 

Using Eq.  (58) 

AX - B = 1 / 8      \ n I A cot — + a) 
\ 2        / 
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or 

Now 

,AX-B 

„AX-B     „ e — a 

/ S        \ =  I A cot — + a I V 2        / 

=   cot 

(60) 

cosec     —   =   1 + cot      — 
2 2 

/AX-B 2    o I e — a 
cosec      —    =   1 + 

2 F=^) 
(61) 

Using Eqs.  (60) and (61) and substituting in Eq.  (59) 

dX 

di" 
*(^)2 

AX-B 

(62) 

dX 
Substituting in Eq.  (57) for   —   obtained in Eq.  (62) and recalling 

dS 

that    p (S) =   — 
2n 

1 
p(X)  =   - 

.AX-B 

1  t (^y (63) 
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PROBABILITY DISTRIBUTION   p (X) FOR   (0O + () < 6-1 < (n - 6Q) 

Using Eq.  (54) 

Acot7-aj^AcotT-ajj (64) 

or 

X  = 
B1 1 / 8        \ 
—   +   —    In   (A cot a I 
A A V 2        / 

(65) 

where 

i1   =   In   (A cot a) 

and is a constant dependent on the mistiming and e , and does not contain the 

variable 8.   The similarity between Eqs.  (65) and (66) is apparent, so to obtain 

p(X)   for     0O + t < ö| < (TT - 90)    we just change   B   to   B1   and  -a   to   +a     in 

Eq.  (63) and we have the probability distribution 

P(X)  =  — 
77 

,AX-B 1 

•m (66) 
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FINAL EXPRESSION FOR THE PROBABILITY DISTRIBUTION 

Using the results obtained from Eqs.  (63) and (66) and recalling that 

P(X = 0) = — 

p (X)   =     for X   =   0 
77 

(67) 

and 

P(X) 
»AX-B ,AX-B 

1 t 
4AX~B - a^ 

1 + 
V^-B'+a1 

for   X > 0  where 

and 

B   =   In   [A cot — + a) 

V     2    / 
(69) 

B1   =   In  f A cot a) 

V      2    / 
(70) 
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The expression for the probability density function given by Eq. (68) 

may now be rewritten with   0o   as the dependent variable by recalling that 

a   =   sinÖ     and   A   =   cos0Q 

Equation (68) reduces to 

where 

and 

p (X ) = 
cos20o   r 

2 n c 

1 

osh (AX-B) - sin0r 

cosh (AX-B1) + sin 

(71) 

B   =   In H) 
sin — 

2 

(72) 

B1   =   In 

cos H) 
( 

sin   
2 

(73) 
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Since later appendixes are concerned with the mean and the accumulative 

distribution, it is necessary to verify that the integral of the probability density 

does in fact equal unity, that is 

f p(X)dX  =   1 

0 

1 Using Eqs. (67) and (68), if p(X) = l, it is required to show that 

f 
.AX-B AX-B 

1 + 
(^   i<(^}. 

dX    =    7T - ( 
(74) 

To evaluate the first term in Eq. (74); i. e., 

I 
.AX-B 

,   AX-B       \2 
o I e — a ' 

1 + 

dX 

PH 
we use the substitution 

(: 

AX-B 
=  u 
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Then 

eAX-B dx  =  du 

f" eAX-B /" du 

^        M(eAX~'-)2    *"    illi      1 + U2 

tan      u 

77 

—    — tan 
2 

e-B-a 

'(^) 

Similarly the second term in Eq.  (74); i.e. , 

/■"        eAX-B1 dX ^   _tan-lfl^lf) 
- -       —     -   —       tan      ^       -        I 

Using Eqs.  (75) and (76), the left-hand side of Eq.  (74) is equal to 

&)--m 77 — tan 

(75) 

(76) 
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r To show that p (X) =  1,     it remains to prove that 
'o 

tan (^)--i(e44< 
Recalling that 

e  ß = /A cot - + aj       (from Eq.  (56)) 

and 

e 
-1 

-B1 5    = JA cot 1 - a j       (from Eq. (65)) 

Equation (77) becomes 

'A - a cot —\ A + a cot — 

tan-11  J+tan-1| | =  f (78) 

A cot — + a/ \A cot — — ai 
2       / \ 2 
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For convenience let 

s   =   cot   — 
2 

u  =   tan 

v   =   tan 

-l/A~as\ 
\ As + a / 

.1  /A + as \ 

1 — tan u tan v 

Using Eqs. (8CT) and (81) 

A — as A + as 

As + a As — a 
tan (u + v)  = 

/A — as\ /A + as \ 

\ As + a I \ As — a I 

(A — as) (As - a) + (A + as) (As + a) 

(As + a) (As T- a) — (A - as) (A + as) 

2s (A2 + a2) 

(s2 - 1) (A2 + a2) 

2s 

(s2 - 1) 

(79) 

(80) 

(81) 

Taking the tangent of each side of Eq. (78) we get 

tan(u + v)  =   tan t (82) 

Now 

tan u + tan v 
tan(u + v)  =      (°3) 

(84) 
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( 
Since    s = cot  _    (from Eq. (79), we have 

2 cot — 2 tan — 
2 2 

tan (u + v)  = 
7   ( 2   e 

cot    _  - 1 1 - tan    — 

tan (u + v)  =   tan e 

which completes the proof required by Eq. (82). 
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APPENDIX ni 

DETERMINATION OF MEAN FOR PULL-IN 
TIME   T   OF A FIRST-ORDER PHASE-LOCKED LOOP 

Appendix II shows that the probability distribution for   X   is given by 

p (X)  = _   for X   =   0 
77 

(85) 

and 

P(X) 
1 

77 

,AX-B AX-BJ 

1 + 
reAX-B _ m 

) ..(^) 

(86) 

for x > o, 

where 

X =  KT 

K = open-loop gain of the loop (a constant) 

T = pull-in time of the loop 

The impulse at   X = 0   does not contribute in any way to the mean; hence 

it can be ignored.    The mean of   X is therefore given by 

r X p (X) dX 

50 
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Using Eq. (86) gives 

X = 

o 

•'o 

X e AX-B Xe AX-B 1 

AX-B 
1 + :)     ,(^)J 

ax 
(88) 

It is not obvious from Eq. (88) which of the many possible substitutions 

will give a convenient solution.   The trick in obtaining the solution to Eq. (88) 

is to recall how the expression for   p (X) was derived in the first place. 

Equations (55) and (64) were used, originally, to determine  p (X); i. e., 

1 17 f      \   / S      \1 =   —    In    IA cot — + a]    | A cot — + a I A [V 2       )   \ 2        )\ (89) 

and 

X 
1    (7     «    \ /     s   \ =   —    In   IA cot  —  - a |   (A cot a) 
A [V 2        /   V 2       / (90) 

U we substitute X, as given in Eq. (89), in the first term of Eq. (88), 

and X, as given in Eq. (90), for the second term in Eq. (88), then Eq. (88) 

reduces to 
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n-260-< 

X  = 
1         f                            1/           « \   ( 8        \                                  In  MA cot a I   IA cot — + a 1 d8 

(91) 

v + 2 d_ - e 

f ,|«i..)(Ac4t,| dS 

where 

eo  =  sin"1   (a) 

Consider the first integral in Eq. (91); i.e., 

" ~ 2 °o ~ 
f m^coti-a)    £~{-.)J d<5 

n-260-( 

\ In  (A cot a | + In [ A cot — — all 

.4,0     L v    2  /   \    2   )\ 
dS (92) 

n-2dQ-e 

In  JA cot aj  (rr - 2dQ - e) +    I In (A cot aj dS 
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Consider the second integral in Eq. (91) 

n + 260-( 

j 
•'8 = 0 

In    (A cot — + a I   IA cot — + a I 
2       /   \ 2 } 

dd 

+ 20o-<     r. 

f 0 ( < \ ( 8 \ In  IA cot — + a / + In   IA cot — + a J 

•^ 8 = 0 L 

dS (93) 

n+260-< 

In (A cot — + a) (TT + 2dQ - e) + In (A cot _ + aj dS 

Using Eqs.  (92) and (93) and substituting in Eq.  (91) 

X =       In | A cot 1 - a j  (TT - 2dQ - e) + In | A cot 1 + a j (IT + 20Q - <) 

1 

2  TT A 

* - 2Öo - TT + 2dn - ( 
(94) 

f / S       \ ( ° ( S       \ In  IA cot — - a I  dd +   I In   IA cot  — + a I 

•'S = 0 ^ ^8 = 0 

d« 

Since    A = cos 0o,    and   a = sin 0C 

A cot — — a 
2 

(H (95) 
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and 

A cot — + a   = 
2 

■G-0 
sin — 

2 

Using these results gives for the second part of Eq. (94) 

(96) 

4zJ 
* + 2*0-« 

In cos (j + do) ~ ln sin 7 as 

IT + 20   - e 

f        ° /«     A 8 
In cos ( —  — 0„ I — ln sin — 

•Lo    L   ^2   ' 
dS, 

which, after considerable rearrangement of limits, reduces to 

l 

2  77 A 

Q
n+ - r°     2 

o       2 

ln cos (X) dA 
r 

— 4 In si in A dA (97) 
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Equation (94) now becomes 

X =     In f A cot — - a ) (77 - 20   - f) 
2TT A ^ 2        / ° 

In {A cot — + a j (77 + 20Q - e) 

0~ + - 

+  2 r    2 r In cos A dA — 4 In 

L   e Jo 
sin A dA 

6°-l 

(98) 

If *   is small, the last two terms in Eq. (98) may be neglected and the 

expression for   X   reduces to 

X        sec <9     I li 
2TT ° 

M)" 
e 

sin — 
2 J 

(n - 20o - 0 + In (••• 3 
sin — 

2 J 

(»TH^-*)' 

(99) 
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APPENDIX IV 

CUMULATIVE DISTRIBUTION FOR THE PULL-IN TIME  T 

The probability density for the pull-in time   T is given by Eqs. (67) and 

(68); i.e., 

p(X)  =   -   for   X  =    0 
77 

(100) 

and 

P(X) = 
,AX-B .AX-B 1 

1 + 
^eAX-B - a^ / AX-B1 + 

1+l-A— 
(101) 

for x > o, 

where 

and 

X  =   KT 

K =  open-loop gain of the loop. 
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The cumulative distribution for   X   is given by the probability that   X is 

less than some specified value, say  X  ; i. e., 

Jb 

p (X < X0) p (X) dX 

k 

Using Eqs. (100) and (101) 

P (X < X ) =  - 1 e + i „AX-B AX-B 1 

L-£M »&4\ 
dx 

(102) 

Consider the first integral in Eq. (102) 

h - r eAX-B 

,  AX-B      A2 
o /e — a * 

1 + 

dX 

(f^i 
Let 

eAX"B - a 

r2    dU 
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where 

and 

-(^) 

reAX0-B _ a 

u2   = 

e-B-a 
u /  AX0-B       \. 

I,   =   Itan"1«!^  -  ta"~Y       A    "*)-tM"1\—Ä (103) 

Using a similar substitution the second integral in Eq. (102) reduces to 

rAX -B1      \ /    Ri 

■ | — tan 
(104) 

Using the results of Eqs.   (103) and (104) we obtain 

p (X < X0) =  - 

AX -B /  AX -B1 

-1  j*      °        -») -1 h ( + tan        V  / + tan 

—   tan -1 e"B-a "<?4 
(105) 
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In Appendix II (Eq. (77) onward), it is shown that the last two terms in 

Eq. (105) were equal to e , so that Eq.  (105) reduces to 

p (X < X )  = _ 
n 

AX -B / AX -B1 

tan      \ / + tan   l 
(106) 
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APPENDIX V 

A NOTE ON INSTANTANEOUS PHASE AND INSTANTANEOUS FREQUENCY 

This Appendix explains the terms "instantaneous phase difference" and 

"instantaneous frequency difference. " 

Suppose we are given a sinusoidal waveform 

El = sinöi (c> (107) 

We define its instantaneous phase as   i^ (t)   and its instantaneous frequency 

as the time derivative of its phase angle 

do,  (t) 
0. (t) =   _L_ (108) 

1 dt 

For example, consider the case where 

dl (t)  =  wjt + a (109) 

which corresponds to a sinusoid with constant angular frequency and an initial 

starting phase at time   t = o   of  a. 

Equation (109) gives its instantaneous phase angle as a function of time 

and the time derivative of Eq. (109) gives its instantaneous frequency as a 

function of time. 

e\ (t) = cüj (110) 

60 



For this case the word instantaneous is redundant, since we are considering 

a sine wave of constant frequency. 

Suppose now we are given two sinusoidal waveforms 

Er  = sinÖj (t) (HI) 

E2   =   sin02 (t) (112) 

We define their instantaneous phase difference as 

0 (t) = 0j (t) - 62 (t) (113) 

and their instantaneous frequency difference as 

6 ft) = Öj (t) - d2 ft) (ii4) 

For example, consider the case where 

ö1 (t)  =  (Ujt + a 

and 

#2 ft) = &>2 ü + ß 

corresponding to two sinusoids with different angular frequencies and different 

initial phase angles. 
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Using Eq.  (113), their instantaneous phase difference is 

e (t) = el (t) - e2 (0 

=  (ffljt + a)  -   (<a2 t + j8) (115) 

= («uj - cu2)t + (a - j8) 

Using Eq. (114), their instantaneous frequency difference is 

e (t) = e1 (t) - e2 (t) 

=   (wj - <u2) 

The definitions of instantaneous phase difference and instantaneous 

frequency difference given by Eqs. (113) and (114) are always valid and 

independent of the actual form of   01 (t)   or   02 (t) . 

(116) 
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